{bbname}
返回列表 发新帖

[转贴]折射望远镜

[复制链接]
发表于 2008-3-23 13:27  | 显示全部楼层 | 阅读模式
百度百科:http://baike.baidu.com/view/246107.html

      折射望远镜是用透镜作物镜将光线汇聚的系统。世界上第一架天文望远镜就是伽利略制造的折射望远镜,它采用凸透镜为物镜。由于玻璃对不同色光的折射率不同,折射望远镜会产生严重的色差,因此,后来的折射望远镜多采用复合透镜作为物镜,即由两块以上的透镜组成,用来消除色差(如美国Meade公司的ED系列)。根据光路的不同,折射望远镜分为伽利略望远镜和开普勒望远镜两种。通常折射望远镜的相对口径较小,即焦距长,底片比例尺大,从而分辨率高,比较适合于做天体测量方面的工作(如测量恒星的位置、双星的角距等)。

优点:

使用方便、制造简单。

适合观测月亮、行星、双星,特别是对于大孔径的望远镜。

结构小巧、不需要额外的维护费用。

封闭的镜筒减弱了空气流动对成像质量的破坏,同时保护了光学镜头。

易于搬运,适合远距离的室外观测。

可以避免二次成像,形成高反差的像质。

通过消色差设计,可以很好的避免色差的出现。

缺点:

价格较牛顿式或卡赛格林式昂贵。

同样口径下,折射式望远镜较牛顿式或卡赛格林式更重、更长、体积更大。

由于口径的限制,不适合于观测深空天体比如河外星系、星云等等。

焦比较小的缺点造成利用折射望远镜来拍摄深空天体显得比较困难。

在消色差设计中,所得影像的色彩或多或少也会有一点的畸变。
发表于 2008-3-23 13:28  | 显示全部楼层
伽利略望远镜
http://baike.baidu.com/view/476805.html

            物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。

             你可以用很低的费用制作一架伽利略式望远镜。从文化用品商店买一块直径、焦距大一些的眼镜片作为物镜和一块焦距、直径较小的透镜作为目镜。用胶水和小槽把两块镜片装在硬纸筒内,再做一个简单的台座,于是一架能够看到月亮上的群山、银河中的繁星和木星的卫星的望远镜便制成了。想想看,伽利略就是用这样的望远镜得到一系列惊人发现的。但是切记,不要通过望远镜直接观察太阳,以免高温灼伤眼睛,除非你有孙悟空的火眼金睛。伽利略的折射望远镜有一个令人讨厌的缺点,就是在明亮物体周围产生“假色”。“假色”产生的症结在于通常所谓的“白光”根本不是白颜色的光,而是由组成彩虹的从红到紫的所有色光混合而成的。当光束进入物镜并被折射时,各种色光的折射程度不同,因此成像的焦点也不同,模糊就产生了。
  
             1611年,另一位天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式。但是“假色”问题仍然未能解决。

[ 本帖最后由 寻找拉玛 于 2008-3-23 13:29 编辑 ]
回复 支持 反对

使用道具 举报

发表于 2008-3-23 13:29  | 显示全部楼层
http://baike.baidu.com/view/534014.html

(Refractor)

                一般折射望远镜的物镜,是由两块不同折光率的玻璃镜片组成,以减少色差,使红蓝两色的 影像聚在同一焦点上,这类镜头称为消色差镜头(Achromatic lens)。严格来说,这类镜头影像外围仍有一个很淡紫色的光晕。

        为了减少镜头的球面差(Spherical aberration),彗形像差(Coma)及像散(Astigmatism),一般可将焦比值增大,因此一般折射望远镜的口径与焦距比(焦比)起码在f10至f16之间。




折射望远镜的结构


          较高级的镜头,是由三块不同折光率的玻璃镜片组成或采用较低色散的玻璃(ED)或甚至采用萤石晶体来制造,可消除红、绿、蓝三色的色差。这些镜头称为复消色差镜头(Apochromat)。它们的口径与焦距比可以达到f5。使到望远镜的长度缩短及重量较轻,使用较为方便,但售价十分昂贵。由于折射望远镜筒可以密封,所以维修保养方面较为方便,更适宜于搬往野外使用,同时亦不受镜筒内气流的影响。

         由于镜头起码由两块玻璃组成,所以成本(要磨制四块镜面)较同口径的反射望远镜昂贵。市面上一般售卖的小型天文望远镜,多属折射望远镜。
回复 支持 反对

使用道具 举报

发表于 2008-3-23 13:30  | 显示全部楼层
APO望远镜 http://baike.baidu.com/view/1459308.html

       APO镜头几乎是高档镜头的代名词。APO,是英文Apochromatic的缩写,意为“复消色差的”。所谓萤石镜片、AD玻璃、UD玻璃、ED玻璃,说到底,都是为了实现APO技术所用的特殊光学材料。 复消色差镜头,是指能对多种色光(超过两种)消除色差的镜头。 消色差镜头(Chromatic)只能对两种色光消色差。



      色散:光学材料的折射率不但与材料本身的物理性质有关,还与光线的波长有关。同一种光学材料,波长越短、折射率越高。具体讲,同一种光学玻璃,绿光比红光折射率高,而蓝光比绿光折射率高。不同光学材料往往有不同的色散。如果一种材料随着波长变化引起折射率变化很大,我们就说这种材料是“高色散”的。反之,则称为“低色散”。一般用ne(材料对绿色的e光的折射率)表示材料的折射率,用阿贝数ve=(ne-1)/(nF-nc)表示材料的相对色散。阿贝数越高,色散越小。式中,第二个字母是下标,表示夫朗和费对应谱线的波长。F是红光,e是绿光,c是蓝光。每一条夫朗和费谱线都有固定不变的波长,因而成了光学设计中的标准波长。


  
       色差:从几何光学原理讲,镜头等效于一个单片凸透镜。凸透镜的焦距,与镜面两边曲率和玻璃的折射率有关。如果镜片形状固定,那就只与制造镜片材料的折射率有关了!由于光学材料都有色散,因此,同一个镜片,对于红光来说,焦距略微长一点;对于蓝光来说,焦距略为短一点。这就叫做“色差”。



有了色差的镜头,具体讲有这么几个缺点:

 1.由于不同色光焦距不同,物点不能很好的聚焦成一个完美的像点,所以成像模糊;

 2.同样,由于不同色光焦距不同,所以放大率不同,画面边缘部分明暗交界处会有彩虹的边缘。

       消色差:利用不同折射率、不同色差的玻璃组合,可以消除色差。例如,利用低折射率、低色散玻璃做凸透镜,利用高折射率、高色散玻璃做凹透镜,然后将两者胶合在一起。为了使两者胶合后仍然等效于一个凸透镜,前者(凸透镜)屈光度要大一些,后者(凹透镜)屈光度要小一些。我们分析这样的双胶合镜对不同波长光线的作用:对于较长波长的光线,由于凹透镜材料色散大、也就是折射率随着波长变化大,所以折射率比中间波长较小,凸透镜起的作用大,双胶合镜长波端焦距偏长。对于较长波短的光线,由于凹透镜色散大、也就是折射率随着波长变化大,所以折射率较大,凹透镜起的发散作用大,双胶合镜短波端焦距也偏长。最后的结论是:这样的双胶合镜中间波长焦距较短、长波和短波光线焦距较长。很明显,中间波长是一个谷,它的周围焦距变化小多了!设计时合理的选择镜片球面曲率、双胶合镜的材料,可以使蓝光、红光焦距恰好相等,这就基本消除了色差。剩余色差对于广角到中焦镜头来说,已经很小了,因此,也就满足了镜头消色差的要求。




           二级光谱:未消色差的镜头随着光线波长增加,焦距单调上升,色差很大。而消色差镜头焦距随波长先减小后增加,色差很小。消色差镜头的剩余色差就叫做“二级光谱”! 二级光谱引起的不同色光焦距变化不可能小于焦距的千分之二,也就是说,镜头焦距越长,消色差越不能满足要求。对镜头质量要求较高时,超长焦消色差镜头的二级光谱已经不可忽视!为了进一步消除二级光谱对镜头质量的影响,引进了复消色差技术。



           复消色差:可以想象,如果某种材料随波长变化折射率的数值可以任意控制,那么我们一定能够设计出色差处处完全补偿、因而完全没有色差的镜头!可惜,材料的色散是不能任意控制的,而且可用的光学材料也就那么有限的若干种!我们退一步设想,如果能够将可见光波段分为蓝-绿、绿-红两个区间,而这两个区间能够分别施用消色差技术,二级光谱就能够基本消除!但是,不幸的是,经过计算证明:如果对绿光与红光消色差,那么蓝光色差就会变得很大;如果对蓝光与绿光消色差,那么红光色差就会变得很大!看起来似乎走进了一个死胡同,顽固的二级光谱好像没有办法消除!



          幸好理论计算为复消色差找到了途径。人们发现,如果制造凸透镜的低折射率材料蓝光对绿光的部分相对色差恰好与制造凹透镜的高折射率材料的部分相对色差相同,那么实现蓝光与红光的消色差之后,绿光的色差恰好消除!这个理论指出了实现复消色差的正确途径,就是寻找一种特殊的光学材料,它的蓝光对红光的相对色散应当很低、而蓝光对绿光的部分相对色散应当很高且与某种高色散材料相同!萤石就是这样一种特殊材料,它的色散非常低(阿贝数高达95.3),而部分相对色散与许多光学玻璃接近! 荧石(即氟化钙,分子式CaF2)折射率比较低(ND=1.4339),微溶于水(0.0016g/100g水),可加工性与化学稳定性较差,但是由于它优异的消色差性能,使它成为一种珍贵的光学材料!自然界能用于光学材料的纯净大块萤石非常少,因而萤石最早仅用于显微镜中。显微镜物镜虽然焦距很短,但由于像距很大、分辨率要求很高,二级光谱仍是个头痛问题。自从萤石人工结晶工艺实现以后,高级超长焦镜头中萤石几乎是不可或缺的材料,萤石镜片几乎成为高档镜头的代名词! 由于萤石价格昂贵、加工困难,各光学公司一直不遗余力的寻找萤石的代用品。氟冕玻璃就是其中一种。各公司所谓AD玻璃、ED玻璃、UD玻璃,往往就是这一类代用品。




         很明显,由于复消色差材料价格昂贵、加工困难,成本非常高,所以只能用在高档镜头上。相应的,这些镜头其它方面的设计也一定与其价格匹配,都是精益求精的。但是,如果有价格相对低廉的复消色差材料,即使性能差一些,也使它们能够用在中档镜头上,改善这些镜头的性能。但是,至少就么目前而言,中档镜头是不可能使用萤石做消色差材料的!


         低色散玻璃:低色散玻璃产生的色差很小、因而消色差之后剩余色差也比较小,对镜头质量改善非常有益。同时,近些年来,一系列高折射率低色散玻璃(主要是镧系稀土玻璃)的采用,镜头质量进一步提高。高折射率玻璃实现同样的屈光度镜片球面曲率较小,因而带来的各种像差尤其是球面像差减小,使得镜头体积减小、结构简化、质量提高。但是,它毕竟不能实现复消色差,无法消除二级光谱,不能与APO技术相提并
回复 支持 反对

使用道具 举报

发表于 2008-3-23 13:33  | 显示全部楼层
历史

        1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜。

        1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。

        1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。

        需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。

        1733年英国人哈尔制成第一台消色差折射望远镜。1758年伦敦的宝兰德也制成同样的望远镜,他采用了折射率不同的玻璃分别制造凸透镜和凹透镜,把各自形成的有色边缘相互抵消。但是要制造很大透镜不容易,目前世界上最大的一台折射式望远镜直径为102厘米,安装在雅弟斯天文台。


        1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。

        十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。

         

      




        折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。

[ 本帖最后由 寻找拉玛 于 2008-3-23 13:52 编辑 ]
回复 支持 反对

使用道具 举报

发表于 2008-3-23 14:35  | 显示全部楼层
如果您认为本帖还有待完善,需要补充新内容或修改错误内容,请回帖说明。
回复 支持 反对

使用道具 举报

发表于 2008-3-24 22:15  | 显示全部楼层
好~~~~~!!!!!!!
回复 支持 反对

使用道具 举报

发表回复

您需要登录后才可以回帖 登录 | 注 册

本版积分规则

关于我们
关于我们
友情链接
联系我们
帮助中心
网友中心
购买须知
支付方式
服务支持
资源下载
售后服务
定制流程
关注我们
官方微博
官方空间
官方微信
快速回复 返回顶部 返回列表